Purpose: We report on the clinical performance of a fully automated approach to treatment planning based on a Pareto optimal, constrained hierarchical optimization algorithm, named Expedited Constrained Hierarchical Optimization (ECHO).
Methods and materials: From April 2017 to October 2018, ECHO produced 640 treated plans for 523 patients who underwent stereotactic body radiation therapy (RT) for paraspinal and other metastatic tumors. A total of 182 plans were for 24 Gy in a single fraction, 387 plans were for 27 Gy in 3 fractions, and the remainder were for other prescriptions or fractionations. Of the plans, 84.5% were for paraspinal tumors, with 69, 302, and 170 in the cervical, thoracic, and lumbosacral spine, respectively. For each case, after contouring, a template plan using 9 intensity modulated RT fields based on disease site and tumor location was sent to ECHO through an application program interface plug-in from the treatment planning system. ECHO returned a plan that satisfied all critical structure hard constraints with optimal target volume coverage and the lowest achievable normal tissue doses. Upon ECHO completion, the planner received an e-mail indicating the plan was ready for review. The plan was accepted if all clinical criteria were met. Otherwise, a limited number of parameters could be adjusted for another ECHO run.
Results: The median planning target volume size was 84.3 cm3 (range, 6.9-633.2). The median time to produce 1 ECHO plan was 63.5 minutes (range, 11-340 minutes) and was largely dependent on the field sizes. Of the cases, 79.7% required 1 run to produce a clinically accepted plan, 13.3% required 1 additional run with minimal parameter adjustments, and 7.0% required ≥2 additional runs with significant parameter modifications. All plans met or bettered the institutional clinical criteria.
Conclusions: We successfully implemented automated stereotactic body RT paraspinal and other metastatic tumors planning. ECHO produced high-quality plans, improved planning efficiency and robustness, and enabled expedited treatment planning at our clinic.
© 2019 The Author(s).