Protein dielectrophoresis: Key dielectric parameters and evolving theory

Electrophoresis. 2021 Mar;42(5):513-538. doi: 10.1002/elps.202000255. Epub 2020 Nov 30.

Abstract

Globular proteins exhibit dielectrophoresis (DEP) responses in experiments where the applied field gradient factor ∇E2 appears far too small, according to standard DEP theory, to overcome dispersive forces associated with the thermal energy kT of disorder. To address this a DEP force equation is proposed that replaces a previous empirical relationship between the macroscopic and microscopic forms of the Clausius-Mossotti factor. This equation relates the DEP response of a protein directly to the dielectric increment δε+ and decrement δε- that characterize its β-dispersion at radio frequencies, and also indirectly to its intrinsic dipole moment by way of providing a measure of the protein's effective volume. A parameter Γpw , taken as a measure of cross-correlated dipole interactions between the protein and its water molecules of hydration, is included in this equation. For 9 of the 12 proteins, for which an evaluation can presently be made, Γpw has a value of ≈4600 ± 120. These conclusions follow an analysis of the failure of macroscopic dielectric mixture (effective medium) theories to predict the dielectric properties of solvated proteins. The implication of a polarizability greatly exceeding the intrinsic value for a protein might reflect the formation of relaxor ferroelectric nanodomains in its hydration shell.

Keywords: Clausius-Mossotti function; Dielectric mixture theory; Electrical double layer; Maxwell stress tensor; Relaxor ferroelectric.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Electric Conductivity
  • Electrophoresis*
  • Models, Chemical
  • Proteins* / analysis
  • Proteins* / chemistry
  • Proteins* / isolation & purification

Substances

  • Proteins