Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium

J Biol Chem. 2020 Dec 25;295(52):18539-18552. doi: 10.1074/jbc.RA120.016149. Epub 2020 Oct 22.

Abstract

Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln263 serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite -1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6-linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization.

Keywords: Phanerochaete chrysosporium; arabinogalactan-protein; biodegradation; carbohydrate metabolism; carbohydrate-binding module family 35; carbohydrate-binding module family 35 exo-β-13-galactanase; carbohydrate-binding protein; enzyme structure; exo-β-1,3-galactanase; glycoside hydrolase family 43; plant cell wall.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Catalytic Domain
  • Crystallography, X-Ray
  • Fungal Proteins / chemistry*
  • Fungal Proteins / metabolism*
  • Galactans / metabolism*
  • Galactose / analogs & derivatives
  • Glycoside Hydrolases / chemistry*
  • Glycoside Hydrolases / metabolism*
  • Mannans / metabolism*
  • Phanerochaete / enzymology*
  • Sequence Homology
  • Substrate Specificity

Substances

  • Fungal Proteins
  • Galactans
  • Mannans
  • galactomannan
  • Glycoside Hydrolases
  • arabinogalactan endo-1,4-beta-galactosidase
  • arabinogalactan
  • Galactose

Associated data

  • PDB/3ZYZ