Drug Delivery Through Multifunctional Polypeptidic Hydrogels

Methods Mol Biol. 2021:2207:127-137. doi: 10.1007/978-1-0716-0920-0_10.

Abstract

Over the last two decades, remarkable progress has been made to the discovery of novel drugs as well as their delivery systems for the treatment of cancer, the major challenge in medicine. Pharmaceutical scientists are trying to shift from traditional to novel drug delivery systems by applying nanotechnology and, in particular, polymeric carriers to medicine. In complex diseases, very sophisticated nanocarriers should be designed to encapsulate a significant quantity of drugs and bypass biological barriers with minimum cargo loss to effectively and directly deliver the encapsulated drug to the desired pathological site. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, combining the properties of the traditional polymers with the 3D structure of natural proteins, i.e., a-helices and β-sheets. In this chapter, we present the recent progress in the synthesis of polymers that form hydrogels in aqueous solutions, based on polypeptides prepared through ring-opening polymerization of N-carboxy anhydrides and which have been loaded with anticancer drugs and studied for their functionality. Advancements in drug design and improvement of multifunctional nanocarriers from the combination of well-defined macromolecular architectures and smart materials are the future for the successful treatment of numerous lethal diseases.

Keywords: Gemcitabine; Hydrogels; Pancreatic cancer; Polypeptides; Ring-opening polymerization; pH- and enzyme stimuli-responsive.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacokinetics
  • Antineoplastic Agents* / pharmacology
  • Delayed-Action Preparations / chemistry
  • Delayed-Action Preparations / pharmacokinetics
  • Delayed-Action Preparations / pharmacology
  • Drug Carriers* / chemistry
  • Drug Carriers* / pharmacokinetics
  • Drug Carriers* / pharmacology
  • Drug Design*
  • Humans
  • Hydrogels* / chemistry
  • Hydrogels* / pharmacokinetics
  • Hydrogels* / pharmacology
  • Hydrogen-Ion Concentration
  • Neoplasms* / drug therapy
  • Neoplasms* / metabolism
  • Neoplasms* / pathology

Substances

  • Antineoplastic Agents
  • Delayed-Action Preparations
  • Drug Carriers
  • Hydrogels