A Parainfluenza Virus Vector Expressing the Respiratory Syncytial Virus (RSV) Prefusion F Protein Is More Effective than RSV for Boosting a Primary Immunization with RSV

J Virol. 2020 Dec 22;95(2):e01512-20. doi: 10.1128/JVI.01512-20. Print 2020 Dec 22.

Abstract

Live-attenuated pediatric vaccines for intranasal administration are being developed for human respiratory syncytial virus (RSV), an important worldwide pediatric respiratory pathogen that lacks a licensed vaccine or suitable antiviral drug. We evaluated a prime-boost strategy in which primary immunization with RSV was boosted by secondary immunization with RSV or with a chimeric recombinant bovine/human parainfluenza virus type 3 (rB/HPIV3) vector expressing the RSV fusion F protein. The vector-expressed F protein had been engineered (DS-Cav1 mutations) for increased stability in the highly immunogenic prefusion (pre-F) conformation, with or without replacement of its transmembrane and cytoplasmic tail domains with their counterparts from bovine parainfluenza virus type 3 (BPIV3) F protein to direct incorporation into the vector virion for increased immunogenicity. In hamsters that received a primary infection with RSV, a booster infection with RSV ∼6 weeks later was completely restricted for producing infectious virus but induced a significant increase in the serum RSV-plaque-reduction neutralizing antibody titer (RSV-PRNT). Boosting instead with the rB/HPIV3-RSV-pre-F vectors resulted in efficient replication and induced significantly higher RSV-PRNTs than RSV. In African green monkeys that received a primary infection with RSV, a booster infection with RSV ∼2, ∼6, or ∼15 months later was highly restricted, whereas booster infections with the vectors had robust replication. Compared with RSV, boosts with the vectors induced 7- to 15-fold higher titers of RSV-specific serum antibodies with high neutralizing activity, as well as significantly higher titers of RSV-specific mucosal IgA antibodies. These findings support further development of this heterologous prime-boost strategy.IMPORTANCE Immune responses to RSV in infants can be reduced due to immunological immaturity and immunosuppression by RSV-specific maternal antibodies. In infants and young children, two infections with wild-type RSV typically are needed to achieve the titers of RSV-specific serum antibodies and protection against illness that are observed in adults. Therefore, a boost might substantially improve the performance of live pediatric RSV vaccines presently being developed. Hamsters and African green monkeys received a primary intranasal infection with RSV and were given a boost with RSV or a parainfluenza virus (PIV) vector expressing RSV fusion protein engineered for enhanced immunogenicity. The RSV boost was highly restricted but induced a significant increase in serum RSV-neutralizing antibodies. The PIV vectors replicated efficiently and induced significantly higher antibody responses. The use of an attenuated PIV vector expressing RSV antigen to boost a primary immunization with an attenuated RSV warrants further evaluation.

Keywords: DS-Cav1; fusion protein; mucosal vaccines; parainfluenza virus type 3; pediatric immunization; prefusion; prime boost; respiratory syncytial virus; vaccine.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Neutralizing / blood
  • Antibodies, Neutralizing / immunology
  • Antibodies, Viral / blood
  • Antibodies, Viral / immunology
  • Chlorocebus aethiops
  • Cricetinae
  • Immunization, Secondary / methods*
  • Immunogenicity, Vaccine
  • Mutation
  • Respiratory Syncytial Virus Infections / prevention & control*
  • Respiratory Syncytial Virus Vaccines / administration & dosage
  • Respiratory Syncytial Virus Vaccines / genetics
  • Respiratory Syncytial Virus Vaccines / immunology*
  • Respiratory Syncytial Virus, Human / genetics
  • Respiratory Syncytial Virus, Human / immunology*
  • Respirovirus / genetics*
  • Vaccines, Attenuated / administration & dosage
  • Vaccines, Attenuated / genetics
  • Vaccines, Attenuated / immunology
  • Vaccines, Synthetic / administration & dosage
  • Vaccines, Synthetic / genetics
  • Vaccines, Synthetic / immunology
  • Viral Fusion Proteins / genetics
  • Viral Fusion Proteins / immunology*

Substances

  • Antibodies, Neutralizing
  • Antibodies, Viral
  • F protein, human respiratory syncytial virus
  • Respiratory Syncytial Virus Vaccines
  • Vaccines, Attenuated
  • Vaccines, Synthetic
  • Viral Fusion Proteins