The substance 3,5,3-triiodothyronine (T3) stimulates growth hormone gene transcription in rat pituitary tumour cells. This stimulation is thought to be mediated by the binding of nuclear T3 receptors to regulatory elements 5' to the transcriptional start site. Understanding of the mechanism by which thyroid hormone activates gene transcription has been limited by failure to purify nuclear T3 receptors because of their low abundance, and by the absence of defined T3 receptor-DNA binding sites affecting T3 regulation. Recently, human and avian c-erb-A gene products have been shown to bind thyroid hormone with high affinity and to have a molecular weight and nuclear association characteristic of the thyroid hormone receptor. In the present report, we describe the development of an avidin-biotin complex DNA-binding assay which can detect specific, high-affinity binding of rat pituitary cell T3 receptors to the sequence 5'CAGGGACGTGACCGCA3', located 164 base pairs 5' to the transcriptional start site of the rat growth hormone gene. An oligonucleotide containing this sequence transferred T3 regulation to the herpes simplex virus thymidine kinase promoter in transfected rat pituitary GC2 cells, and specifically bound an in vitro translation product of the human placental c-erb-A gene. The data provide supporting evidence that the human c-erb-A gene product mediates the transcriptional effects of T3 and also that GC2 cell nuclear extracts contain additional factors that modify the binding of pituitary T3 receptors to the rat growth hormone gene T3 response element.