Accessory molecules present on the cell surface of cytolytic T lymphocytes (CTL) play an important role in their activation. Antigen-specific recognition by CTL is inhibited by antibodies against Lyt-2, L3T4, or LFA-1 molecules. Presently it is not known whether these molecules function by binding a ligand such as class I or class II on the target cell or by delivering a signal that down-regulates T cell activation. In the present study we utilized anti-T cell antibodies including anti-T3 and anti-T cell receptor (alpha/beta) as well as an anti-Ly-6.2C monoclonal antibody to activate CTL clones to kill irrelevant targets or secrete BLT esterase. The redirected lysis assay system utilizes the fact that heteroconjugates between anti-T3, and anti-T cell receptor, or anti-Ly-6.2C and anti-trinitrophenyl can trigger CTL lysis of trinitrophenyl-coupled targets that did not express antigen. In this system anti-Lyt-2 antibodies as well as anti-LFA-1 antibodies inhibited triggering via T cell receptor-related molecules but not via the anti-Ly-6.2C heteroconjugate. In addition, the anti-Lyt-2 was shown to inhibit conjugate formation in the heteroaggregate assay system suggesting that the anti-Lyt-2 antibodies acted early in inhibiting CTL activity. Similar results were observed in a system in which the CTL clones were triggered to secrete a BLT-esterase-like activity in the absence of target cells. Anti-T3 coated on plastic was shown to activate BLT-esterase secretion. This secretion was inhibited by anti-Lyt-2 and anti-LFA-1. Thus, it would appear that both the Lyt-2 molecule and the LFA-1 molecule act as signal-transducing elements involved in CTL activation. In particular, the Lyt-2 molecule appears to preferentially function in receptor-mediated T cell activation.