Primary ciliary dyskinesia (PCD) is an autosomal recessive rare disease caused by an alteration of ciliary structure. Immunofluorescence, consisting in the detection of the presence and distribution of cilia proteins in human respiratory cells by fluorescence, has been recently proposed as a technique to improve understanding of disease-causing genes and diagnosis rate in PCD. The objective of this study is to determine the accuracy of a panel of four fluorescently labeled antibodies (DNAH5, DNALI1, GAS8 and RSPH4A or RSPH9) as a PCD diagnostic tool in the absence of transmission electron microscopy analysis. The panel was tested in nasal brushing samples of 74 patients with clinical suspicion of PCD. Sixty-eight (91.9%) patients were evaluable for all tested antibodies. Thirty-three cases (44.6%) presented an absence or mislocation of protein in the ciliary axoneme (15 absent and 3 proximal distribution of DNAH5 in the ciliary axoneme, 3 absent DNAH5 and DNALI1, 7 absent DNALI1 and cytoplasmatic localization of GAS8, 1 absent GAS8, 3 absent RSPH9 and 1 absent RSPH4A). Fifteen patients had confirmed or highly likely PCD but normal immunofluorescence results (68.8% sensitivity and 100% specificity). In conclusion, immunofluorescence analysis is a quick, available, low-cost and reliable diagnostic test for PCD, although it cannot be used as a standalone test.
Keywords: PCD; antibody; cilia; immunofluorescence; primary ciliary dyskinesia.