Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities

Genome Med. 2020 Nov 20;12(1):99. doi: 10.1186/s13073-020-00799-2.

Abstract

Background: Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic intervention.

Methods: We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion.

Results: We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide association study hit ELK3. The accompanying gene expression changes associated with natural killer cell inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell viability and resolved pathways contributing to this using scRNA-seq.

Conclusions: Our data provide a detailed picture of the transcription factor activities characterizing both normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment strategies targeting the immune microenvironment and the active regulatory network in leukemia.

Keywords: Cell differentiation; Gene regulation; Leukemia; Single cell genomics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bone Marrow
  • Cell Differentiation / genetics*
  • Cell Line, Tumor
  • Cell Proliferation*
  • Child
  • Core Binding Factor Alpha 2 Subunit / genetics*
  • Core Binding Factor Alpha 2 Subunit / metabolism
  • Drug Delivery Systems
  • ETS Translocation Variant 6 Protein
  • Gene Expression Regulation, Neoplastic
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study
  • Humans
  • Leukemia / drug therapy
  • Leukemia / genetics*
  • Lymphocytes / physiology*
  • Proto-Oncogene Proteins c-ets / genetics*
  • Proto-Oncogene Proteins c-ets / metabolism
  • Repressor Proteins / genetics*
  • Repressor Proteins / metabolism
  • Transcription Factors
  • Transcriptome
  • Translocation, Genetic

Substances

  • Core Binding Factor Alpha 2 Subunit
  • Elk3 protein, human
  • Proto-Oncogene Proteins c-ets
  • RUNX1 protein, human
  • Repressor Proteins
  • Transcription Factors