Coronary artery disease remains the leading cause of death globally and is a major burden to every health system in the world. There have been significant improvements in risk modification, treatments, and mortality; however, our ability to detect asymptomatic disease for early intervention remains limited. Recent discoveries regarding the inflammatory nature of atherosclerosis have prompted investigation into new methods of diagnosis and treatment of coronary artery disease. This article reviews some of the highlights of the important developments in cardioimmunology and summarizes the clinical evidence linking the immune system and atherosclerosis. It provides an overview of the major serological biomarkers that have been associated with atherosclerosis, noting the limitations of these markers attributable to low specificity, and then contrasts these serological markers with the circulating immune cell subtypes that have been found to be altered in coronary artery disease. This review then outlines the technique of mass cytometry and its ability to provide high-dimensional single-cell data and explores how this high-resolution quantification of specific immune cell subpopulations may assist in the diagnosis of early atherosclerosis in combination with other complimentary techniques such as single-cell RNA sequencing. We propose that this improved specificity has the potential to transform the detection of coronary artery disease in its early phases, facilitating targeted preventative approaches in the precision medicine era.
Keywords: atherosclerosis; coronary artery disease; immune system; inflammation; mass cytometry.