Duckweed (Landoltia punctata) is an ideal species to restore cadmium (Cd)-polluted waters due to its fast growth and easy harvesting. To understand its tolerance and detoxification mechanism, the Cd stress responses, subcellular Cd distribution and chemically bound Cd forms (especially protein-bound Cd) were surveyed in this study. L. punctata, a potential Cd bioremediation plant, was cultured hydroponically with Cd concentrations of 0.0, 0.5, 2.0, and 5.0 mg L-1 for 5 days. The results showed that the Cd content in L. punctata increased significantly as the Cd content increased. The majority of Cd was localized in the soluble fraction (23-55%) and the cell wall fraction (21-54%), and only 14-23% of Cd was located in cell organelles. Analysis of the Cd chemical forms demonstrated that the largest portion of Cd was found in 1 M NaCl extracts, followed by d-H2O and 2% HAc extracts, indicating that Cd was mainly bound to different proteins. Albumin- and globulin-bound Cd forms were predominant, together accounting for over 80% of the total protein-bound Cd in L. punctata. These results indicate that cell wall immobilization and vacuolar dissociation of Cd are possible primary strategies for Cd biosorption and detoxification in L. punctata, which occur mainly through chemical forms changes, especially the binding of Cd to proteins.
Keywords: Cd bioremediation; Chemical forms; Landoltia punctata; Proteins; Subcellular distribution.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.