Human regulatory T cells (Tregs) have been implicated in cancer immunotherapy and are also an emerging cellular therapeutic for the treatment of multiple indications. Although Treg stability during ex vivo culture has improved, methods to assess Treg stability such as bisulfite Sanger sequencing to determine the methylation status of the Treg-specific demethylated region (TSDR) have remained unchanged. Bisulfite Sanger sequencing is not only costly and cumbersome to perform, it is inaccurate because of relatively low read counts. Bisulfite next-generation sequencing, although more accurate, is a less accessible method. In this study, we describe the application of methylation-sensitive restriction enzymes (MSRE) and quantitative PCR (qPCR) to determine the methylation status of the TSDR. Using known ratios of Tregs and non-Tregs, we show that MSRE-qPCR can distinguish the methylation status of the TSDR in populations of cells containing increasing proportions of Tregs from 0 to 100%. In a comparison with values obtained from an established bisulfite next-generation sequencing approach for determining the methylation status of the TSDR, our MSRE-qPCR results were within 5% on average for all samples with a high percentage (>70%) of Tregs, reinforcing that MSRE-qPCR can be completed in less time than other methods with the same level of accuracy. The value of this assay was further demonstrated by quantifying differences in TSDR methylation status of Tregs treated with and without rapamycin during an ex vivo expansion culture. Together, we show that our novel application of the MSRE-qPCR to the TSDR is an optimal assay for accurate assessment of Treg purity.
Copyright © 2021 by The American Association of Immunologists, Inc.