Background and purpose: While WEB devices have been shown to be safe and effective for aneurysm treatment, WEB-shape modification compression has been associated with incomplete aneurysm occlusion. We explored the relationship between occlusion rates and WEB-shape modification in different WEB device types in an experimental aneurysm model.
Materials and methods: Elastase-induced aneurysms were created in rabbits and treated with dual-layer (n = 12), single-layer (n = 12), or single-layer sphere (n = 12) WEB devices. Aneurysms were followed up either at 3 or 12 months. Angiographic occlusion was graded using the WEB Occlusion Scale: grade I, complete; grade II, complete but recess filling; grade III, residual neck; or grade IV, residual aneurysm. WEB-shape modification and histologic features were also analyzed.
Results: Grade I or II occlusion was seen in 16 (44%) aneurysms, and grade I, II, or III ("adequate") occlusion was observed in 22 (61.1%) aneurysms at follow-up. WEB-shape modification was observed in 22 (61.1%) aneurysms. WEB-shape modification was higher in single-layer (9/12) and dual-layer (10/12) devices compared with single-layer sphere devices (3/12). Aneurysms with WEB-shape modification had a higher level of thrombus organization in the dome compared with those without WEB-shape modification (68% [15/22] versus 50% [7/14]). WEB-shape modification was not correlated with angiographic or histologic outcomes but was significantly correlated with levels of fibrosis and smooth muscle cells in the aneurysm.
Conclusions: WEB-shape modification is not associated with incomplete aneurysm occlusion of WEB devices in the rabbit model but may be related to connective tissue formation and the healing response to WEB device implantation.
© 2021 by American Journal of Neuroradiology.