Microsecond Exchange Processes Studied by Two-Dimensional ESR at 95 GHz

J Am Chem Soc. 2020 Dec 23;142(51):21368-21381. doi: 10.1021/jacs.0c09469. Epub 2020 Dec 11.

Abstract

Exchange processes which include conformational change, protonation/deprotonation, and binding equilibria are routinely studied by 2D exchange NMR techniques, where information about the exchange of nuclei between environments with different NMR shifts is obtained from the development of cross-peaks. Whereas 2D NMR enables the real time study of millisecond and slower exchange processes, 2D ESR in the form of 2D-ELDOR (two-dimensional electron-electron double resonance) has the potential for such studies over the nanosecond to microsecond real time scales. Cross-peak development due to chemical exchange has been seen previously for semiquinones in ESR, but this is not possible for most common ESR probes, such as nitroxides, studied at typical ESR frequencies because, unlike NMR, the exchanging states yield ESR signals that are not resolved from each other within their respective line widths. But at 95 GHz, it becomes possible to resolve them in many cases because of the increased g-factor resolution. The 95 GHz instrumental developments occurring at ACERT now enable such studies. We demonstrate these new capabilities in two studies: (A) the protonation/deprotonation process for a pH-sensitive imidazoline spin label in aqueous solution where the exchange rate and the population ratio of the exchanging states are controlled by the concentration and pH of the buffer solution, respectively, and (B) a nitroxide radical partitioning between polar (aqueous) and nonpolar (phospholipid) environments in multilamellar lipid vesicles, where the cross-peak development arises from the exchange of the nitroxide between the two phases. This work represents the first example of the observation and analysis of cross-peaks arising from chemical exchange processes involving nitroxide spin labels.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Buffers
  • Electron Spin Resonance Spectroscopy*
  • Hydrogen-Ion Concentration
  • Imidazolines / chemistry
  • Kinetics
  • Magnetic Resonance Spectroscopy
  • Phospholipids / chemistry
  • Protons
  • Spin Labels
  • Water / chemistry

Substances

  • Buffers
  • Imidazolines
  • Phospholipids
  • Protons
  • Spin Labels
  • Water