An ultra-high density SNP-based linkage map for enhancing the pikeperch (Sander lucioperca) genome assembly to chromosome-scale

Sci Rep. 2020 Dec 18;10(1):22335. doi: 10.1038/s41598-020-79358-z.

Abstract

Pikeperch (Sander lucioperca) is a fish species with growing economic significance in the aquaculture industry. However, successful positioning of pikeperch in large-scale aquaculture requires advances in our understanding of its genome organization. In this study, an ultra-high density linkage map for pikeperch comprising 24 linkage groups and 1,023,625 single nucleotide polymorphisms markers was constructed after genotyping whole-genome sequencing data from 11 broodstock and 363 progeny, belonging to 6 full-sib families. The sex-specific linkage maps spanned a total of 2985.16 cM in females and 2540.47 cM in males with an average inter-marker distance of 0.0030 and 0.0026 cM, respectively. The sex-averaged map spanned a total of 2725.53 cM with an average inter-marker distance of 0.0028 cM. Furthermore, the sex-averaged map was used for improving the contiguity and accuracy of the current pikeperch genome assembly. Based on 723,360 markers, 706 contigs were anchored and oriented into 24 pseudomolecules, covering a total of 896.48 Mb and accounting for 99.47% of the assembled genome size. The overall contiguity of the assembly improved with a scaffold N50 length of 41.06 Mb. Finally, an updated annotation of protein-coding genes and repetitive elements of the enhanced genome assembly is provided at NCBI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chromosome Mapping
  • Genetic Linkage / genetics*
  • Genome / genetics*
  • Microsatellite Repeats / genetics
  • Perches / genetics*
  • Polymorphism, Single Nucleotide / genetics
  • Quantitative Trait Loci / genetics*
  • Recombination, Genetic / genetics