Development of Orally Efficacious Allosteric Inhibitors of TNFα via Fragment-Based Drug Design

J Med Chem. 2021 Jan 14;64(1):417-429. doi: 10.1021/acs.jmedchem.0c01280. Epub 2020 Dec 30.

Abstract

Tumor necrosis factor α (TNFα) is a soluble cytokine that is directly involved in systemic inflammation through the regulation of the intracellular NF-κB and MAPK signaling pathways. The development of biologic drugs that inhibit TNFα has led to improved clinical outcomes for patients with rheumatoid arthritis and other chronic autoimmune diseases; however, TNFα has proven to be difficult to drug with small molecules. Herein, we present a two-phase, fragment-based drug discovery (FBDD) effort in which we first identified isoquinoline fragments that disrupt TNFα ligand-receptor binding through an allosteric desymmetrization mechanism as observed in high-resolution crystal structures. The second phase of discovery focused on the de novo design and optimization of fragments with improved binding efficiency and drug-like properties. The 3-indolinone-based lead presented here displays oral, in vivo efficacy in a mouse glucose-6-phosphate isomerase (GPI)-induced paw swelling model comparable to that seen with a TNFα antibody.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Allosteric Regulation
  • Animals
  • Arthritis, Rheumatoid / drug therapy
  • Autoimmune Diseases / drug therapy
  • Biological Products / chemical synthesis*
  • Biological Products / pharmacology
  • Biological Products / therapeutic use
  • Drug Design*
  • Ligands
  • Mice
  • Tumor Necrosis Factor-alpha / antagonists & inhibitors*
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Biological Products
  • Ligands
  • Tumor Necrosis Factor-alpha