The p53 signaling pathway of the large yellow croaker (Larimichthys crocea) responds to acute cold stress: evidence via spatiotemporal expression analysis of p53, p21, MDM2, IGF-1, Gadd45, Fas, and Akt

PeerJ. 2020 Dec 18:8:e10532. doi: 10.7717/peerj.10532. eCollection 2020.

Abstract

The p53 activation is induced by stressors, such as DNA damage, oxidative stress, and activated oncogenes, and can promote cell cycle arrest, cellular senescence, and apoptosis. The large yellow croaker (Larimichthys crocea) is an important warm temperate marine fish in the Chinese aquiculture industry. However, few studies have investigated the role of p53 in the response of L. crocea to environmental stressors. Therefore, the aim of the present study was to assess the spatiotemporal mRNA expression levels of genes involved in the p53 signaling pathway of the large yellow croaker in response to cold stress. The results showed significant changes in the expression levels of p53, p21, MDM2, IGF-1, Gadd45, Fas, and Akt in various tissues of the large yellow croaker in response to cold stress for different times. As compared to the control group, p53 mRNA expression was upregulated in most of the examined tissues at 24 h with the exception of the gill. In the liver, the expression levels of p53 and Fas were significantly decreased at 12 h, while those of p21, MDM2, IGF-1, Gadd45 were dramatically increased. Akt expression was notably changed in response to cold in several tissues. These results suggested that p53 was potentially a key gene in the large yellow croaker response to cold and possibly other environmental stressors.

Keywords: Cold stress; Gene network; Large yellow croaker; mRNA expression; p53 signaling pathway.

Grants and funding

This project was funded by Zhejiang Provincial Natural Science Foundation of China (Grant No. LGN18C190007) and Taizhou science and technology project (Grant No. 1901ny09). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.