Since 2005, subgroup J avian leukosis virus (ALV-J) infection has been present in yellow chickens in Guangdong, China, causing severe economic losses to the local poultry industry. ALV-J is a rapidly evolving retrovirus. To investigate the molecular characteristics of ALV-J isolates from yellow breeder chickens in Guangdong, 17 virus strains were isolated from 6549 anticoagulants from clinically healthy birds between 2016 and 2019, and completely sequenced and phylogenetically analyzed. Phylogenetic analysis of the gp85 gene showed that all isolated viruses were divided into three different branches. Notably, 41.2% (7/17) of the isolates shared a novel G2598A nucleotide mutation in the pol gene and caused the stop codon to be advanced by 8 positions. Nearly 200 nucleotides were deleted from the redundant TM (rTM) region in all strains, but all retained an intact direct repeat (DR1). 82.4% (14/17) of isolates contained a complete E element. Additionally, 29.4% (5/17) of isolates detected an 11 bp deletion in U3 region, and the AIB REP1 transcription factor is missing. The study indicated that ALV-J infection had still been prevalent in the yellow breeder chicken farms in Guangdong, and the genetic background of the strains is diverse. This study provides the latest data on the molecular characteristics of ALV-J, which will help to reveal the evolution trend of ALV-J and develop relevant prevention and control measures.
Keywords: Phylogenetic analysis; Subgroup J avian leukosis virus; Yellow breeder chickens; pol gene mutation.
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.