Androgen receptor and its splice variant, AR-V7, differentially induce mRNA splicing in prostate cancer cells

Sci Rep. 2021 Jan 14;11(1):1393. doi: 10.1038/s41598-021-81164-0.

Abstract

Prostate cancer (PCa) is dependent on the androgen receptor (AR). Advanced PCa is treated with an androgen deprivation therapy-based regimen; tumors develop resistance, although they typically remain AR-dependent. Expression of constitutively active AR variants lacking the ligand-binding domain including the variant AR-V7 contributes to this resistance. AR and AR-V7, as transcription factors, regulate many of the same genes, but also have unique activities. In this study, the capacity of the two AR isoforms to regulate splicing was examined. RNA-seq data from models that endogenously express AR and express AR-V7 in response to doxycycline were used. Both AR isoforms induced multiple changes in splicing and many changes were isoform-specific. Analyses of two endogenous genes, PGAP2 and TPD52, were performed to examine differential splicing. A novel exon that appears to be a novel transcription start site was preferentially induced by AR-V7 in PGAP2 although it is induced to a lesser extent by AR. The previously described AR induced promoter 2 usage that results in a novel protein derived from TPD52 (PrLZ) was not induced by AR-V7. AR, but not AR-V7, bound to a site proximal to promoter 2, and induction was found to depend on FOXA1.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Line, Tumor
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Male
  • Neoplasm Proteins / biosynthesis*
  • Neoplasm Proteins / genetics
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / metabolism*
  • Prostatic Neoplasms / pathology
  • RNA Splicing*
  • RNA-Seq
  • Receptors, Androgen / biosynthesis*
  • Receptors, Androgen / genetics

Substances

  • Neoplasm Proteins
  • Receptors, Androgen