Background: The accuracy of current prediction tools for ischaemic and bleeding events after an acute coronary syndrome (ACS) remains insufficient for individualised patient management strategies. We developed a machine learning-based risk stratification model to predict all-cause death, recurrent acute myocardial infarction, and major bleeding after ACS.
Methods: Different machine learning models for the prediction of 1-year post-discharge all-cause death, myocardial infarction, and major bleeding (defined as Bleeding Academic Research Consortium type 3 or 5) were trained on a cohort of 19 826 adult patients with ACS (split into a training cohort [80%] and internal validation cohort [20%]) from the BleeMACS and RENAMI registries, which included patients across several continents. 25 clinical features routinely assessed at discharge were used to inform the models. The best-performing model for each study outcome (the PRAISE score) was tested in an external validation cohort of 3444 patients with ACS pooled from a randomised controlled trial and three prospective registries. Model performance was assessed according to a range of learning metrics including area under the receiver operating characteristic curve (AUC).
Findings: The PRAISE score showed an AUC of 0·82 (95% CI 0·78-0·85) in the internal validation cohort and 0·92 (0·90-0·93) in the external validation cohort for 1-year all-cause death; an AUC of 0·74 (0·70-0·78) in the internal validation cohort and 0·81 (0·76-0·85) in the external validation cohort for 1-year myocardial infarction; and an AUC of 0·70 (0·66-0·75) in the internal validation cohort and 0·86 (0·82-0·89) in the external validation cohort for 1-year major bleeding.
Interpretation: A machine learning-based approach for the identification of predictors of events after an ACS is feasible and effective. The PRAISE score showed accurate discriminative capabilities for the prediction of all-cause death, myocardial infarction, and major bleeding, and might be useful to guide clinical decision making.
Funding: None.
Copyright © 2021 Elsevier Ltd. All rights reserved.