Adolescent traumatic brain injury (TBI) is a major public health concern, resulting in >35,000 hospitalizations in the United States each year. Although neuroimaging is a primary diagnostic tool in the clinical assessment of TBI, our understanding of how specific neuroimaging findings relate to outcome remains limited. Our study aims to identify imaging biomarkers of long-term neurocognitive outcome after severe adolescent TBI. Twenty-four adolescents with severe TBI (Glasgow Coma Scale ≤8) enrolled in the ADAPT (Approaches and Decisions after Pediatric TBI) study were recruited for magnetic resonance imaging (MRI) scanning 1-2 years post-injury at 13 participating sites. Subjects underwent outcome assessments ∼1-year post-injury, including the Wechsler Abbreviated Scale of Intelligence (IQ) and the Pediatric Glasgow Outcome Scale-Extended (GOSE-Peds). A typically developing control cohort of 38 age-matched adolescents also underwent scanning and neurocognitive assessment. Brain-image segmentation was performed on T1-weighted images using Freesurfer. Brain and ventricular cerebrospinal fluid volumes were used to compute a ventricle-to-brain ratio (VBR) for each subject, and the corpus callosum cross-sectional area was determined in the midline for each subject. The TBI group demonstrated higher VBR and lower corpus callosum area compared to the control cohort. After adjusting for age and sex, VBR was significantly related with GOSE-Peds score in the TBI group (n = 24, p = 0.01, cumulative odds ratio = 2.18). After adjusting for age, sex, intracranial volume, and brain volume, corpus callosum cross-sectional area correlated significantly with IQ score in the TBI group (partial cor = 0.68, n = 18, p = 0.007) and with PSI (partial cor = 0.33, p = 0.02). No association was found between VBR and IQ or between corpus callosum and GOSE-Peds. After severe adolescent TBI, quantitative MRI measures of VBR and corpus callosum cross-sectional area are associated with global functional outcome and neurocognitive outcomes, respectively.
Keywords: MRI; cognitive function; corpus callosum; severe adolescent brain injury; traumatic brain injury; ventricle-to-brain ratio.