Laboratory Selection, Cross-Resistance, Risk Assessment to Lambda-Cyhalothrin Resistance, and Monitoring of Insecticide Resistance for Plant Bug Lygus pratensis (Hemiptera: Miridae) in Farming-Pastoral Ecotones of Northern China

J Econ Entomol. 2021 Apr 13;114(2):891-902. doi: 10.1093/jee/toaa305.

Abstract

The plant bug Lygus pratensis Linnaeus (Hemiptera: Miridae) is an important insect pest of alfalfa in grassland farming in northern China. A field population of L. pratensis was selected in the laboratory for 14 consecutive generations with lambda-cyhalothrin to generate 42.555-fold resistance. Selection also induced low cross-resistance to imidacloprid and beta-cypermethrin, and medium cross-resistance to deltamethrin. Realized heritability (h2) of lambda-cyhalothrin resistance was 0.339. Susceptible baselines of L. pratensis were established for five insecticides using the glass-vial method, the values of which were 6.849, 3.423, 8.778, 3.559, and 117.553 ng/cm2 for phoxim, methomyl, imidacloprid, lambda-cyhalothrin, and avermectin, respectively, along with the calculated LC99 diagnostic doses. This resistance risk assessment study suggests that a high risk of lambda-cyhalothrin resistance exists in the field. In addition, a 5-year field investigation of resistance monitoring of L. pratensis was conducted in seven alfalfa regions in farming-pastoral ecotones in northern China. The resistance levels of most populations were very low for phoxim, methomyl, and avermectin, with an upward trend for lambda-cyhalothrin resistance in the DK (Dengkou County), TKT (Tuoketuo County), XL (Xilinhot), and LX (Linxi County) populations during 2015-2019, and medium resistance level to imidacloprid in the TKT population in five years we sampled. The study provided information on chemical control, lambda-cyhalothrin resistance development, baseline susceptibility, and the status of resistance to five commonly-used insecticides against L. pratensis. These results could be used to optimize pyrethroid insecticide use as part of a pest integrated resistance management strategy against this key insect pest of alfalfa.

Keywords: Lygus pratensis; baseline susceptibility; pyrethroid resistance selection; resisitance monitoring; risk assessment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture
  • Animals
  • China
  • Insecticide Resistance
  • Insecticides* / pharmacology
  • Laboratories
  • Nitriles
  • Pyrethrins*
  • Risk Assessment

Substances

  • Insecticides
  • Nitriles
  • Pyrethrins
  • cyhalothrin