Management of vancomycin administration for intensive care units (ICU) patients remains a challenge. The aim of this study was to describe a population pharmacokinetic model of vancomycin for optimizing the dose regimen for ICU patients. We prospectively enrolled 466 vancomycin-treated patients hospitalized in the ICU, collected trough or approach peak blood samples of vancomycin and recorded corresponding clinical information from July 2015 to December 2017 at Tai Zhou Hospital of Zhejiang Province. The pharmacokinetics of vancomycin was analyzed by nonlinear mixed effects modeling with Kinetica software. Internal and external validation was evaluated by the maximum likelihood method. Then, the individual dosing regimens of the 92 patients hospitalized in the ICU whose steady state trough concentrations exceeded the target range (10-20 μg/ml) were adjusted by the Bayes feedback method. The final population pharmacokinetic model show that clearance rate (CL) of vancomycin will be raised under the conditions of dopamine combined treatment, severe burn status (Burn-S) and increased total body weight (TBW), but reduced under the conditions of increased serum creatinine (Cr) and continuous renal replacement therapy status; Meanwhile, the apparent distribution volume (V) of vancomycin will be enhanced under the terms of increased TBW, however decreased under the terms of increased age and Cr. The population pharmacokinetic parameters (CL and V) according to the final model were 3.16 (95%CI 2.83, 3.40) L/h and 60.71 (95%CI 53.15, 67.46). The mean absolute prediction error for external validation by the final model was 12.61% (95CI 8.77%, 16.45%). Finally, the prediction accuracy of 90.21% of the patients' detected trough concentrations that were distributed in the target range of 10-20 μg/ml after dosing adjustment was found to be adequate. There is significant heterogeneity in the CL and V of vancomycin in ICU patients. The constructed model is sufficiently precise for the Bayesian dose prediction of vancomycin concentrations for the population of ICU Chinese patients.