Synthetic biology is a relatively new field of science that combines aspects of biology and engineering to create novel tools for the construction of biological systems. Using tools within synthetic biology, stem cells can then be reprogrammed and differentiated into a specified cell type. Stem cells have already proven to be largely beneficial in many different therapies and have paved the way for tissue engineering and regenerative medicine. Although scientists have made great strides in tissue engineering, there still remain many questions to be answered in regard to regeneration. Presented here is an overview of synthetic biology, common tools built within synthetic biology, and the way these tools are being used in stem cells. Specifically, this review focuses on how synthetic biologists engineer genetic circuits to dynamically control gene expression while also introducing emerging topics such as genome engineering and synthetic transcription factors. The findings mentioned in this review show the diverse use of stem cells within synthetic biology and provide a foundation for future research in tissue engineering with the use of synthetic biology tools. Overall, the work done using synthetic biology in stem cells is in its early stages, however, this early work is leading to new approaches for repairing diseased and damaged tissues and organs, and further expanding the field of tissue engineering.
Keywords: regenerative medicine; stem cells; synthetic biology; tissue engineering.
© 2019 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology.