Objective.Full restoration of arm function using a prosthesis remains a grand challenge; however, advances in robotic hardware, surgical interventions, and machine learning are bringing seamless human-machine interfacing closer to reality.Approach.Through extensive data logging over 1 year, we monitored at-home use of the dexterous Modular Prosthetic Limb controlled through pattern recognition of electromyography (EMG) by an individual with a transhumeral amputation, targeted muscle reinnervation, and osseointegration (OI).Main results.Throughout the study, continuous prosthesis usage increased (1% per week,p< 0.001) and functional metrics improved up to 26% on control assessments and 76% on perceived workload evaluations. We observed increases in torque loading on the OI implant (up to 12.5% every month,p< 0.001) and prosthesis control performance (0.5% every month,p< 0.005), indicating enhanced user integration, acceptance, and proficiency. More importantly, the EMG signal magnitude necessary for prosthesis control decreased, up to 34.7% (p< 0.001), over time without degrading performance, demonstrating improved control efficiency with a machine learning-based myoelectric pattern recognition algorithm. The participant controlled the prosthesis up to one month without updating the pattern recognition algorithm. The participant customized prosthesis movements to perform specific tasks, such as individual finger control for piano playing and hand gestures for communication, which likely contributed to continued usage.Significance.This work demonstrates, in a single participant, the functional benefit of unconstrained use of a highly anthropomorphic prosthetic limb over an extended period. While hurdles remain for widespread use, including device reliability, results replication, and technical maturity beyond a prototype, this study offers insight as an example of the impact of advanced prosthesis technology for rehabilitation outside the laboratory.
Keywords: electromyography; pattern recognition; prosthesis; rehabilitation; take-home study; technology translation.
© 2021 IOP Publishing Ltd.