Oilseeds are an important source of dietary lipids, and a comprehensive analysis of oilseed lipids is of great significance to human health, while information about the global lipidomes in oilseeds was limited. Herein, an ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry method for comprehensive lipidomic profiling of oilseeds was established and applied. First, the lipid extraction efficiency and lipid coverage of four different lipid extraction methods were compared. The optimized methyl tert-butyl ether extraction method was superior to isopropanol, Bligh-Dyer, and Folch extraction methods, in terms of the operation simplicity, lipid coverage, and number of identified lipids. Then, global lipidomic analysis of soybean, sesame, peanut, and rapeseed was conducted. A total of 764 lipid molecules, including 260 triacylglycerols, 54 diacylglycerols, 313 glycerophospholipids, 36 saccharolipids, 35 ceramides, 30 free fatty acids, 21 fatty esters, and 15 sphingomyelins were identified and quantified. The compositions and contents of lipids significantly varied among different oilseeds. Our results provided a theoretical basis for the selection and breeding of varieties of oilseed as well as deep processing of oilseed for the edible oil industry.
Keywords: UPLC−Q-TOF−MS/MS; glycerolipids; glycerophospholipids; lipid extraction; lipidomic; oilseed.