Lippia alba (Verbenaceae) is one of the most studied species of the genus Lippia, mainly due to its medicinal properties. The species was described as a polyploid complex with five cytotypes. The comparison of gene expression in species with several ploidal levels needs to be conducted carefully due to possible changes in gene regulation. Quantitative reverse transcription PCR (qRT-PCR) is a widely used method for transcript abundance analyses in plants. Besides being an extremely powerful technique, relative quantification by Real-Time quantitative PCR (RT-qPCR) needs the normalization with a stable reference gene. We evaluated the stability of nine candidate reference genes in Lippia alba with different ploidal levels using NormFinder, geNorm, and RefFinder software. The product of each primer showed a single peak in the melting curve. The R2 value ranged from 0.998 to 1000 and primers efficiency ranged from 98.95% to 129%. The CIT gene came up as a stable housekeeping gene, being appropriate for studies in polyploid accessions of Lippia alba. Considering that polyploidy is widely documented in Angiosperms, the results can be used not only for further gene expression studies in L. alba but also as a possible reference gene for other polyploid complexes. Differential stability among different genes highlights the importance of the validation of reference genes used for RT-qPCR approach in polyploid studies.
Keywords: Gene stability; Housekeeping genes; Medicinal plants; Polyploidy; RT-qPCR; Target gene.