Purpose: Emmetropization is the process of adjusting ocular growth to the focal plane in order to achieve a clear image. Chromatic light may be involved as a cue to guide this process. Achromats are color blind and lack normal cone function; they are often described as being hyperopic, indicating a failure to emmetropize. We aim to describe the refraction and refractive development in a population of genetically characterized achromats.
Methods: Refractive error data were collected retrospectively from 28 medical records of CNGB3 c.1148delC homozygous achromats. The distribution of spherical equivalent refractive error (SER) and spherical error was analyzed in adults. The refractive development in children was analyzed by documenting astigmatic refractive error and calculating median SER in 1-year age groups and by analyzing the individual development when possible.
Results: The distribution of SER and spherical error resembled a Gaussian distribution, indicating that emmetropization was disturbed in achromats, but we found indication of some decrease in SER during the first years of childhood. The prevalence of refractive errors was high and broadly distributed. Astigmatic refractive errors were frequent but did not seem to increase with age.
Conclusions: Refractive development in achromats is more complicated than a complete failure to emmetropize. The spread of refractive errors is larger than previously documented. Results presented here support the theory that chromatic cues and cone photoreceptors may play a role in emmetropization in humans but that it is not essential.