Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary-scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre-formed microvessels is used to successfully create perfusable and cellularized organ-specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney-specific microvascular structure is achieved, using laser-guided angiogenesis. Finally, proof-of-concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ-on-a-chip devices.
Keywords: biomaterials; microphysiological systems; multiphoton ablation; organ-on-a-chip; tissue engineering.
© 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.