Effects of riboflavin and Bacillus subtilis on internal organ development and intestinal health of Ross 708 male broilers with or without coccidial challenge

Poult Sci. 2021 Apr;100(4):100973. doi: 10.1016/j.psj.2020.12.070. Epub 2020 Dec 31.

Abstract

In a companion study, we found that inclusion of different doses of riboflavin affected growth performance of Ross 708 male broilers' responses to coccidial challenge (by 5 Eimeria spp on day 14 of age) and dietary Bacillus subtilis (B. subtilis) supplementation. The current study was conducted to further test whether supplementation of B. subtilis and riboflavin will reduce negative impact and inflammation caused by Eimeria spp proliferation and help proper function of internal organs. A total of 1,248 Ross × Ross 708 male broiler chicks were randomly placed in 96 floor pens (8 blocks, 12 treatments). Treatments were arranged in a 3 (riboflavin) × 2 (B. subtilis) × 2 (Coccidial challenge) factorial arrangement in a randomized complete block design. Coccidial challenge reduced the weight of sampled birds on day 27 and day 36 and increased the relative weights of the internal organs of proventriculus, duodenum, jejunum, ileum, and spleen to BW on day 27, which may be because of inflammation caused by proliferation of Eimeria spp. The increased relative weights of duodenum, jejunum, ileum, and spleen on coccidial challenged birds were lost on day 36. Correlation analysis also indicated that the jejunum weight was positively related to villus height, Eimeria acervulina, and Eimeria maxima on day 27 but was not on day 36. The loss of the positive relationships may be because of recovery of the birds from coccidiosis on day 36. Even though the coccidial challenge and riboflavin interactively affected feed conversion ratio and BW gain and supplementation of dietary B. subtilis reduced mortality from day 35 to 42 in the companion study, the same response of internal organs was not observed in the current study. Coccidial challenge compromised development of internal organs of Ross 708 male broilers at an early age, but the negative effects subsided with age of birds rather than supplementation of riboflavin and B. subtilis at current tested levels under our experimental set up.

Keywords: Bacillus subtilis; coccidiosis; internal organ development; riboflavin.

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Bacillus subtilis
  • Chickens
  • Coccidiosis* / veterinary
  • Diet / veterinary
  • Dietary Supplements
  • Male
  • Poultry Diseases* / drug therapy
  • Riboflavin / pharmacology

Substances

  • Riboflavin