Bacterial infections are the key cause of morbidity and mortality worldwide. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS)-based bacterial identification has been widely accepted in the clinic. Functional material, such as rabbit immunoglobulin G-modified Fe3O4 (IgG@Fe3O4) and fragment crystallizable mannose binding lectin-modified Fe3O4 (FcMBL@Fe3O4), is used to capture bacteria from biological samples for MALDI-TOF MS identification, and the bacteria MS signals are usually obtained by directly smearing enriched bacteria on a MALDI target with MALDI matrix solution. However, the accuracy of identification based on MALDI-TOF MS may be affected by the presence of functional molecules, especially proteins, resulting in errors in the comparison with the standard bacterial spectra in the database. Moreover, the long-term presence of the magnetic beads on the MALDI-TOF target may reduce the instrument service life. In this study, we constructed FcMBL@Fe3O4 and used it to capture bacteria from both aqueous solution and bovine blood, and the bacterial identification accuracy based on different target preparation methods was compared. In the presence of Ca2+, the similarity scores for bacteria identified with FcMBL@Fe3O4 were ~88% and ~82% for Staphylococcus. aureus and Escherichia coli, respectively. In the presence of ethylenediaminetetraacetic acid (EDTA), bacteria separate from FcMBL@Fe3O4, resulting in similarity scores of ~96% and ~92% for S. aureus and E. coli, respectively. These results indicate that the functional proteins on the surface of nanoparticles affect the accuracy of identification accuracy based on the MALDI-TOF MS database. Thus, the release of bacteria from the functional material could increase the identification accuracy and be beneficial for maintaining the instrument.
Keywords: Bacteria identification; EDTA; FcMBL; MALDI-TOF MS; Magnetic beads.
Copyright © 2020 Elsevier B.V. All rights reserved.