The measurement of plasma hotspot velocity provides an important diagnostic of implosion performance for inertial confinement fusion experiments at the National Ignition Facility. The shift of the fusion product neutron mean kinetic energy as measured along multiple line-of-sight time-of-flight spectrometers provides velocity vector components from which the hotspot velocity is inferred. Multiple measurements improve the hotspot velocity inference; however, practical considerations of available space, operational overhead, and instrumentation costs limit the number of possible line-of-sight measurements. We propose a solution to this classical "experiment design" problem that optimizes the precision of the velocity inference for a limited number of measurements.