Anti-CD20 Disrupts Meningeal B-Cell Aggregates in a Model of Secondary Progressive Multiple Sclerosis

Neurol Neuroimmunol Neuroinflamm. 2021 Mar 2;8(3):e975. doi: 10.1212/NXI.0000000000000975. Print 2021 May.

Abstract

Objective: Therapies targeting B cells have been used in the clinic for multiple sclerosis (MS). In patients with relapsing MS, anti-CD20 therapy often suppresses relapse activity; yet, their effect on disease progression has been disappointing. Most anti-CD20 therapeutic antibodies are type I, but within the unique microenvironment of the brain, type II antibodies may be more beneficial, as type II antibodies exhibit reduced complement-dependent cytotoxicity and they have an increased capacity to induce direct cell death that is independent of the host immune response.

Methods: We compared the effect of type I with type II anti-CD20 therapy in a new rodent model of secondary progressive MS (SPMS), which recapitulates the principal histopathologic features of MS including meningeal B-cell aggregates. Focal MS-like lesions were induced by injecting heat-killed Mycobacterium tuberculosis into the piriform cortex of MOG-immunized mice. Groups of mice were treated with anti-CD20 antibodies (type I [rituxumab, 10 mg/kg] or type II [GA101, 10 mg/kg]) 4 weeks after lesion initiation, and outcomes were evaluated by immunohistochemistry.

Results: Anti-CD20 therapy decreased the extent of glial activation, significantly decreased the number of B and T lymphocytes in the lesion, and resulted in disruption of the meningeal aggregates. Moreover, at the given dose, the type II anti-CD20 therapy was more efficacious than the type I and also protected against neuronal death.

Conclusions: These results indicate that anti-CD20 may be an effective therapy for SPMS with B-cell aggregates and that the elimination of CD20+ B cells alone is sufficient to cause disruption of aggregates in the brain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Monoclonal, Humanized / immunology
  • Antibodies, Monoclonal, Humanized / pharmacology*
  • Antigens, CD20
  • Astrocytes / drug effects
  • B-Lymphocytes / drug effects*
  • B-Lymphocytes / immunology
  • Brain / pathology
  • Disease Models, Animal
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Microglia / drug effects
  • Multiple Sclerosis, Chronic Progressive / drug therapy*
  • Rituximab / pharmacology*

Substances

  • Antibodies, Monoclonal, Humanized
  • Antigens, CD20
  • Rituximab
  • obinutuzumab