SARS-CoV-2 has highlighted the requirement for a drastic change in pandemic response. While cases continue to rise, there is an urgent need to deploy sensitive and rapid testing in order to identify potential outbreaks before there is an opportunity for further community spread. Currently, reverse transcription quantitative polymerase chain reaction (RT-qPCR) is considered the gold standard for diagnosing an active infection, using a nasopharyngeal swab; however, it can take days after symptoms develop to properly identify and trace the infection. While many civilian jobs can be performed remotely, the Department of Defense (DOD) is by nature a very fluid organization which requires in-person interaction and a physical presence to maintain effectiveness. In this commentary, we examine several current and emergent technologies and their ability to identify both active and previous SARS-CoV-2 infection, possibly in those without symptoms. Further, we will explore an ongoing study at the Air Force Research Laboratory, utilizing Reverse Transcription Loop-mediated isothermal amplification (RT-LAMP), next-generation sequencing, and the presence of SARS-CoV-2 antibodies through Lateral Flow Immunoassays. The ability to identify SARS-CoV-2 through volatile organic compound biomarker identification will also be explored. By exploring and validating multiple testing strategies, and contributing to Operation Warp Speed, the DOD is postured to respond to SARS-CoV-2, and future pandemics.