The species on the C3H2O potential energy surface have long been known to play a vital role in extraterrestrial chemistry. Here we report on the hitherto uncharacterized isomer ethynylhydroxycarbene (H-C≡C-C̈-OH, 1) generated by high-vacuum flash pyrolysis of ethynylglyoxylic acid ethyl ester and trapped in solid argon matrices at 3 and 20 K. Upon irradiation at 436 nm trans-1 rearranges to its higher lying cis-conformer. Prolonged irradiation leads to the formation of propynal. When the matrix is kept in the dark, 1 reacts within a half-life of ca. 70 h to propynal in a conformer-specific [1,2]H-tunneling process. Our results are fully consistent with computations at the CCSD(T)/cc-pVTZ and the B3LYP/def2-QZVPP levels of theory.