Chagas disease remains a major social and public health problem in Latin America. Benznidazole (BZN) is the main drug with activity against Trypanosoma cruzi. Due to the high number of adverse drug reactions (ADRs), BZN is underprescribed. The goal of this study was to evaluate the genetic and transcriptional basis of BZN adverse reactions.
Methods: A prospective cohort with 102 Chagas disease patients who underwent BZN treatment was established to identify ADRs and understand their genetic basis. The patients were classified into two groups: those with at least one ADR (n = 73), and those without ADRs (n = 29). Genomic analyses were performed comparing single nucleotide polymorphisms between groups. Transcriptome data were obtained comparing groups before and after treatment, and signaling pathways related to the main ADRs were evaluated.
Results: A total of 73 subjects (71.5%) experienced ADRs. Dermatological symptoms were most frequent (45.1%). One region of chromosome 16, at the gene LOC102724084 (rs1518601, rs11861761, and rs34091595), was associated with ADRs (p = 5.652 × 10-8). Transcriptomic data revealed three significantly enriched signaling pathways related to BZN ADRs.
Conclusions: These data suggest that part of adverse BZN reactions might be genetically determined and may facilitate patient risk stratification prior to starting BZN treatment.
Keywords: Chagas disease; adverse drug reactions; benznidazole; pharmacogenomics.