Sexual dimorphism, the phenomenon whereby males and females of the same species are distinctive in some aspect of appearance or size, has previously been documented in cattle for traits such as growth rate and carcass merit using a quantitative genetics approach. No previous study in cattle has attempted to document sexual dimorphism at a genome level; therefore, the objective of the present study was to determine whether genomic regions associated with size and muscularity in cattle exhibited signs of sexual dimorphism. Analyses were undertaken on 10 linear-type traits that describe the muscular and skeletal characteristics of both males and females of five beef cattle breeds: 1,444 Angus (AA), 6,433 Charolais (CH), 1,129 Hereford, 8,745 Limousin (LM), and 1,698 Simmental. Genome-wide association analyses were undertaken using imputed whole-genome sequence data for each sex separately by breed. For each single-nucleotide polymorphism (SNP) that was segregating in both sexes, the difference between the allele substitution effect sizes for each sex, in each breed separately, was calculated. Suggestively (P ≤ 1 × 10-5) sexually dimorphic SNPs that were segregating in both males and females were detected for all traits in all breeds, although the location of these SNPs differed by both trait and breed. Significantly (P ≤ 1 × 10-8) dimorphic SNPs were detected in just three traits in the AA, seven traits in the CH, and three traits in the LM. The vast majority of all segregating autosomal SNPs (86% in AA to 94% in LM) had the same minor allele in both males and females. Differences (P ≤ 0.05) in allele frequencies between the sexes were observed for between 36% (LM) and 66% (AA) of the total autosomal SNPs that were segregating in both sexes. Dimorphic SNPs were located within a number of genes related to muscularity and/or size including the NAB1, COL5A2, and IWS1 genes on BTA2 that are located close to, and thought to be co-inherited with, the MSTN gene. Overall, sexual dimorphism exists in cattle at the genome level, but it is not consistent by either trait or breed.
Keywords: GWAS; beef cattle; genomics; sexual antagonism; sexual dimorphism.
© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.