Modelling of fields generated by therapeutic ultrasound arrays can be prone to errors arising from differences from nominal transducer parameters, and variations in relative outputs of array elements when driven under different conditions, especially when simulating steered fields. Here, the effect of element size, element positions, relative source pressure variations, and electrical crosstalk on the accuracy of modelling pressure fields generated by a 555 kHz 32-element ultrasonic array were investigated. For this transducer, errors in pressure amplitude and focal position were respectively reduced from 20% to 4% and 3.3 mm to 1.5 mm using crosstalk prediction, and experimentally determined positions.