Biological detergents like sodium deoxycholate, sodium dodecyl sulphate and Triton X-100 impairs the collagenous and non-collagenous proteins, glycosaminoglycans and growth factors. Further, certain chemical and enzymes are responsible for residual cytotoxicity in the decellularized extracellular matrix. The main focus of this study was to explore the decellularization property of soap nut pericarp extract (SPE) for development of decellularized tubular esophageal scaffold. For this 2.5, 5.0 and 10% concentrations of SPE were used for decellularization of caprine esophageal tissues. Histological analysis of hematoxylin and eosin and Masson's trichrome stained tissue samples confirmed decellularization with preservation of extracellular matrix microarchitecture. Scanning electron microscopic images of luminal surface of decellularized esophageal matrix showed randomly oriented collagen fibres with large interconnected pores and cells were absent. However, the external surface was more textured with fibrous structures and collagen fibres were well preserved. DAPI stained decellularized tissues revealed complete removal of nuclear components, verified by DNA content measurement and SDS-PAGE. The FTIR spectra of decellularized esophagus shows absorption peaks of amide A, B, I, II and III. Elastic modulus of the decellularized esophagus scaffolds increased (P > 0.05) as compared to native tissues. Histological and scanning electron microscopic evaluation of in vitro seeded scaffolds showed attachment and growth of primary chicken embryo fibroblasts over and within the decellularized scaffolds. It was concluded that 5% SPE is ideal for preparation of cytocompatible decellularized caprine esophageal scaffold with well-preserved extracellular matrix architecture and, may be used as an alternative to biological detergents and other chemicals.
Keywords: Caprine esophagus; DAPI staining; Decellularization; FTIR; Soap nut pericarp extract.
© 2021. The Author(s), under exclusive licence to Springer Nature B.V.