Observation of photon-mode decoupling in a strongly coupled multimode microcavity

J Chem Phys. 2021 Mar 28;154(12):124309. doi: 10.1063/5.0038086.

Abstract

We have fabricated organic semiconductor microcavities having an extended optical path-length (up to 2 µm) that contain J-aggregates of a cyanine dye. These structures are studied using optical-reflectivity and are found to be characterized by a series of polaritonic modes. By changing the effective oscillator strength of the dye within the cavity, we evidence a transition from "normal" strong coupling in which the photon modes are coupled to one another via the excitonic transition of the molecular dye to a state in which photon-modes become decoupled. We use an eight-level modified Hamiltonian to describe the optical properties of the system and compare the distribution of the confined optical field in coupled and decoupled structures.