Luminescence and Energy Transfer of Color-Tunable Y2Mg2Al2Si2O12:Eu2+,Ce3+ Phosphors

Inorg Chem. 2021 Apr 19;60(8):5908-5916. doi: 10.1021/acs.inorgchem.1c00317. Epub 2021 Apr 3.

Abstract

Color-tunable phosphors can be obtained through codoping strategies and energy transfer regulation. Ce3+ and Eu2+ are the most common and effective activator ions used in phosphor materials. However, the energy transfer from Eu2+ to Ce3+ is rarely reported. In this work, Y2Mg2Al2Si2O12(YMAS):Eu2+,Ce3+ phosphors were successfully synthesized, which was confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Rietveld refinement, scanning electron microscopy (SEM) and element mapping images, and spectral information. The luminescent color of YMAS:Eu2+,Ce3+ phosphors could be tuned from blue to cyan to light green to yellow-green and finally to green-yellow, which was achieved by adjusting the energy transfer between different dopants. The energy transfer from Eu2+ to Ce3+ was confirmed by photoluminescence spectra and fluorescence decay curves. Within the experimental gradient, the energy transfer efficiency could reach up to 48%. At 373 K, the Y1.99Mg1.99Al2Si2O12:0.01Eu2+,0.01Ce3+ (YMAS:0.01Eu2+,0.01Ce3+) phosphor exhibited a total integral emission loss of only 8%, and the emission peak intensity decreased to 95%, indicating the excellent thermal stability. The white light-emitting diode (WLED) fabricated by the YMAS:0.01Eu2+,0.01Ce3+ phosphor has the same level correlated color temperature (CCT = 5841 K), greatly improved color rendering index (Ra = 87.8), and higher quality white light color (CIE = (0.3258, 0.3214)) than the WLED made by the YMAS:0.01Eu2+ phosphor, indicating that the performance of the phosphor was significantly improved by introducing Ce3+. This work provides an effective guide for the design and development of highly efficient color-tunable phosphors involving energy transfer from Eu2+ to Ce3+ in some specific materials, such as garnet structures.