Interactions of an Imine Polymer with Nanoporous Silica and Carbon in Hybrid Adsorbents for Carbon Capture

Langmuir. 2021 Apr 20;37(15):4622-4631. doi: 10.1021/acs.langmuir.1c00305. Epub 2021 Apr 5.

Abstract

Efficient carbon capture from stationary point sources can be achieved using hybrid adsorbents comprising nanoporous substrates coated with imine polymers. The physical properties of the CO2-adsorbing, nanodispersed polymers are altered by their interactions with the substrate, which in turn may impact their capture capacity. We study silica and carbon nanoporous substrates with different pore morphologies that were impregnated with polymer imine with the goal of characterizing the polymer dispersions in the pores. For silica and carbon samples, the mean densities of confined poly(ethylene imine) (PEI) were measured as functions of polymer loading and temperature using small-angle neutron scattering. Strong densification is found for imine polymers imbibed in mesoporous carbon. PEI in nanoporous silica does not experience this strong densification. At high loadings, plugs form, preferably at the pore throats, and can reduce accessible porosity. CO2 capture measurements show that PEI interactions with the substrate play an important role. PEI in carbon shows the highest capture capacity at low temperatures and the lowest CO2 adsorption at high temperatures, making it well-suited for temperature swing adsorption applications.