We report on a recently developed laser-probing diagnostic, which allows direct measurements of ray-deflection angles in one axis while retaining imaging capabilities in the other axis. This allows us to measure the spectrum of angular deflections from a laser beam, which passes through a turbulent high-energy-density plasma. This spectrum contains information about the density fluctuations within the plasma, which deflect the probing laser over a range of angles. We create synthetic diagnostics using ray-tracing to compare this new diagnostic with standard shadowgraphy and schlieren imaging approaches, which demonstrates the enhanced sensitivity of this new diagnostic over standard techniques. We present experimental data from turbulence behind a reverse shock in a plasma and demonstrate that this technique can measure angular deflections between 0.06 and 34 mrad, corresponding to a dynamic range of over 500.