Objective: Interstitial cystitis (IC)/bladder pain syndrome (BPS) is a chronic inflammatory disease that can cause bladder pain and accompanying symptoms, such as long-term urinary frequency and urgency. IC/BPS can be ulcerative or non-ulcerative. The aim of this study was to explore the core genes involved in the pathogenesis of ulcerative IC, and thus the potential biomarkers for clinical treatment.
Materials and methods: First, the gene expression dataset GSE11783 was downloaded using the Gene Expression Omnibus (GEO) database and analyzed using the limma package in R to identify differentially expressed genes (DEGs). Then, the Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for Gene Ontology (GO) functional analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for pathway enrichment analysis. Finally, the protein-protein interaction (PPI) network was constructed, and key modules and hub genes were determined using the STRING and Cytoscape software. The resulting key modules were then analyzed for tissue-specific gene expression using BioGPS.
Results: A total of 216 up-regulated DEGs and 267 down-regulated genes were identified, and three key modules and nine hub genes were obtained.
Conclusion: The core genes (CXCL8, CXCL1, IL6) obtained in this study may be potential biomarkers of interstitial cystitis with guiding significance for clinical treatment.
Keywords: Computational Biology; Cystitis, Interstitial; Genes.
Copyright® by the International Brazilian Journal of Urology.