Geminal diacetates have been used as sustainable acyl donors for enzymatic acylation of chiral and nonchiral alcohols. Especially, it was revealed that geminal diacetates showed higher reactivity than vinyl acetate for hydrolases that are sensitive to acetaldehyde. Under optimized conditions for enzymatic acylation, several synthetically relevant saturated and unsaturated acetates of various primary alcohols were obtained in very high yields up to 98% without E/Z isomerization of the double bond. Subsequently, the acyl donor was recreated from the resulting aldehyde and reused constantly in acylation. Therefore, the developed process is characterized by high atomic efficiency. Moreover, it was shown that acylation using geminal diacetates resulted in remarkable regioselectivity by discriminating among the primary and secondary hydroxyl groups in 1-phenyl-1,3-propanediol providing exclusively 3-acetoxy-1-phenyl-propan-1-ol in good yield. Further, enzymatic kinetic resolution (EKR) and chemoenzymatic dynamic kinetic resolution (DKR) protocols were developed using geminal diacetate as an acylating agent, resulting in chiral acetates in high yields up to 94% with enantiomeric excesses exceeding 99%.