Coffee is the most widely consumed source of caffeine worldwide, partly due to the psychoactive effects of this methylxanthine. Interestingly, the effects of its chronic consumption on the brain's intrinsic functional networks are still largely unknown. This study provides the first extended characterization of the effects of chronic coffee consumption on human brain networks. Subjects were recruited and divided into two groups: habitual coffee drinkers (CD) and non-coffee drinkers (NCD). Resting-state functional magnetic resonance imaging (fMRI) was acquired in these volunteers who were also assessed regarding stress, anxiety, and depression scores. In the neuroimaging evaluation, the CD group showed decreased functional connectivity in the somatosensory and limbic networks during resting state as assessed with independent component analysis. The CD group also showed decreased functional connectivity in a network comprising subcortical and posterior brain regions associated with somatosensory, motor, and emotional processing as assessed with network-based statistics; moreover, CD displayed longer lifetime of a functional network involving subcortical regions, the visual network and the cerebellum. Importantly, all these differences were dependent on the frequency of caffeine consumption, and were reproduced after NCD drank coffee. CD showed higher stress levels than NCD, and although no other group effects were observed in this psychological assessment, increased frequency of caffeine consumption was also associated with increased anxiety in males. In conclusion, higher consumption of coffee and caffeinated products has an impact in brain functional connectivity at rest with implications in emotionality, alertness, and readiness to action.
© 2021. The Author(s).