The bone microenvironment invigorates metastatic seeds for further dissemination

Cell. 2021 Apr 29;184(9):2471-2486.e20. doi: 10.1016/j.cell.2021.03.011. Epub 2021 Apr 19.

Abstract

Metastasis has been considered as the terminal step of tumor progression. However, recent genomic studies suggest that many metastases are initiated by further spread of other metastases. Nevertheless, the corresponding pre-clinical models are lacking, and underlying mechanisms are elusive. Using several approaches, including parabiosis and an evolving barcode system, we demonstrated that the bone microenvironment facilitates breast and prostate cancer cells to further metastasize and establish multi-organ secondary metastases. We uncovered that this metastasis-promoting effect is driven by epigenetic reprogramming that confers stem cell-like properties on cancer cells disseminated from bone lesions. Furthermore, we discovered that enhanced EZH2 activity mediates the increased stemness and metastasis capacity. The same findings also apply to single cell-derived populations, indicating mechanisms distinct from clonal selection. Taken together, our work revealed an unappreciated role of the bone microenvironment in metastasis evolution and elucidated an epigenomic reprogramming process driving terminal-stage, multi-organ metastases.

Keywords: EZH2; bone metastasis; circulating tumor cells; disseminated tumor cells; epigenomic reprograming; evolving barcodes; organ tropism; plasticity; secondary metastasis; stemness.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism
  • Bone Neoplasms / genetics
  • Bone Neoplasms / metabolism
  • Bone Neoplasms / secondary*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology*
  • Cell Proliferation
  • Disease Progression
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred NOD
  • Mice, Nude
  • Mice, SCID
  • Neoplasm Metastasis*
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / metabolism
  • Prostatic Neoplasms / pathology*
  • Tumor Cells, Cultured
  • Tumor Microenvironment*
  • Xenograft Model Antitumor Assays

Substances

  • Biomarkers, Tumor