Fabry disease (FD) is a lysosomal storage disorder caused by deficient alpha-galactosidase A activity in the lysosome due to mutations in the GLA gene, resulting in gradual accumulation of globotriaosylceramide and other derivatives in different tissues. Substrate accumulation promotes different pathogenic mechanisms in which several mediators could be implicated, inducing multiorgan lesions, mainly in the kidney, heart and nervous system, resulting in clinical manifestations of the disease. Enzyme replacement therapy was shown to delay disease progression, mainly if initiated early. However, a diagnosis in the early stages represents a clinical challenge, especially in patients with a non-classic phenotype, which prompts the search for biomarkers that help detect and predict the evolution of the disease. We have reviewed the mediators involved in different pathogenic mechanisms that were studied as potential biomarkers and can be easily incorporated into clinical practice. Some accumulation biomarkers seem to be useful to detect non-classic forms of the disease and could even improve diagnosis of female patients. The combination of such biomarkers with some response biomarkers, may be useful for early detection of organ injury. The incorporation of some biomarkers into clinical practice may increase the capacity of detection compared to that currently obtained with the established diagnostic markers and provide more information on the progression and prognosis of the disease.
Keywords: Gb3; biomarkers; cardiomyopathy; chronic kidney disease; classic phenotype; fabry disease; inflammatory response; late-onset phenotype; lyso-Gb3; vasculopathy.