Purpose: Oocytes and embryos can be vitrified with and without dimethyl sulfoxide (DMSO). Objectives were to compare no vitrification (No-Vitr), vitrification with DMSO (Vitr + DMSO), and vitrification without DMSO (Vitr - DMSO) on fresh/warmed oocyte survival, induced parthenogenetic activation, parthenogenetic embryo development, and embryonic maternal imprinted gene expression.
Methods: In this prospective controlled laboratory study, mature B6C3F1 female mouse metaphase II oocytes were treated as: i) No-Vitr, ii) Vitr + DMSO/warmed, and iii) Vitr - DMSO/warmed with subsequent parthenogenetic activation and culture to the blastocyst stage. Oocyte cryo-survival, parthenogenetic activation and embryo development, parthenogenetic embryo maternal imprinted gene expression were outcome measures.
Results: Oocyte cryo-survival was significantly improved in Vitr + DMSO versus Vitr - DMSO at initial warming and 2 h after warming. Induced parthenogenetic activation was similar between all three intervention groups. While early preimplantation parthenogenetic embryo development was similar between control, Vitr + DMSO, Vitr - DMSO oocytes, the development to blastocysts was significantly inferior in the Vitr - DMSO oocytes group compared to the control and Vitr + DMSO oocyte groups. Finally, maternal imprinted gene expression was similar between intervention groups at both the 2-cell and blastocyst parthenogenetic embryo stage.
Conclusion(s): Inclusion of DMSO in oocyte vitrification solutions improved cryo-survival and developmental potential of parthenogenetic embryos to the blastocyst stage without significantly altering maternal imprinted gene expression.
Keywords: Development; Dimethyl sulfoxide; Maternal imprinted gene expression; Oocyte; Vitrification.
© 2021. Springer Science+Business Media, LLC, part of Springer Nature.