Biofilms are formed by microorganisms protected by a self-produced matrix, most often attached to a surface. In the food processing environments biofilms endanger the product safety by the transmission of spoilage and pathogenic bacteria. In this study, we characterised the biofilm formation of the following eleven strains isolated from biofilms in a meat-processing environment: Acinetobacter harbinensis BF1, Arthrobacter sp. BF1, Brochothrix thermosphacta BF1, Carnobacterium maltaromaticum BF1, Kocuria salsicia BF1, Lactococcus piscium BF1, Microbacterium sp. BF1, Pseudomonas fragi BF1, Psychrobacter sp. BF1, Rhodococcus erythropolis BF1, Stenotrophomonas sp. BF1. We applied whole- genome sequencing and subsequent genome analysis to elucidate genetic features associated with the biofilm lifestyle. We furthermore determined the motility and studied biofilm formation on stainless steel using a static mono-species biofilm model mimicking the meat processing environment. The biomass and the EPS components carbohydrates, proteins and extracellular DNA (eDNA) of the biofilms were investigated after seven days at 10 °C. Whole-genome analysis of the isolates revealed that all strains except the Kocuria salsicia BF1 isolate, harboured biofilm associated genes, including genes for matrix production and motility. Genes involved in cellulose metabolism (present in 82% of the eleven strains) and twitching motility (present in 45%) were most frequently found. The capacity for twitching was confirmed using plate assays for all strains except Lactococcus piscium BF1, which showed the lowest motility behaviour. Differences in biofilm forming abilities could be demonstrated. The bacterial load ranged from 5.4 log CFU/cm2 (Psychrobacter sp. isolate) to 8.7 log CFU/cm2 (Microbacterium sp. isolate). The amount of the matrix components varied between isolates. In the biofilm of six strains we detected all three matrix components at different levels (carbohydrates, proteins and eDNA), in two only carbohydrates and eDNA, and in three only carbohydrates. Carbohydrates were detected in biofilms of all strains ranging from 0.5 to 4.3 μg glucose equivalents/cm2. Overall, the Microbacterium sp. strain showed the highest biofilm forming ability with high bacterial load (8.7 log CFU/cm2) and high amounts of carbohydrates (2.2 μg glucose equivalents/cm2), proteins (present in all experiments) and eDNA (549 ng/cm2). In contrast, Brochothrix thermosphacta was a weak biofilm former, showing low bacterial load and low levels of carbohydrates in the matrix (6.2 log CFU/cm2 and 0.5 μg glucose equivalents/cm2). This study contributes to our understanding of the biofilm forming ability of bacteria highly abundant in the meat processing environment, which is crucial to develop strategies to prevent and reduce biofilm formation in the food producing environment.
Keywords: Cellulose; Genomic features; Matrix; Meat spoilage; Motility.
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.